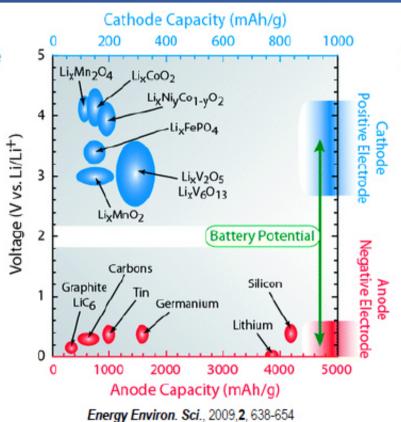


16. - 17. Februar 2022 München

Powered by elektroniknet.de

Aspekte kommerzieller Batteriezellentwicklung mit Beispielen des Technologieservice und Problemlösungen Tim Schäfer



■ Negative Electrode – Anode

Graphite

- Hard Carbon
- Li₄Ti₅O₁₂ (LTO)
- Silicon
- Tin
- SiO_x
- Metal alloys

• ...

■ Positive Electrode – Cathode

- LiCoO₂ (LCO, layer)
- LiNi_xMn_yCo_zO₂ (NMC, spinel)
- ◆ LiMn₂O₄ (LMO, spinel)
- LiFePO₄ (LFP, olivine)

Inhalt

Im Vortrag sollen aktuelle Ergebnisse von Vorhaben zur Batteriezellentwicklung in Dienstleistung vorgestellt werden, die u.a.m. mit Komposit-Material und dem sogenannten Troika-Prozess (patentiert), erarbeitet worden sind:

- ✓ Komposit- Material und Elektroden f
 ür Batteriezellen
- ✓ Batteriezellen Beispiele
- ✓ Prozess

Equipment

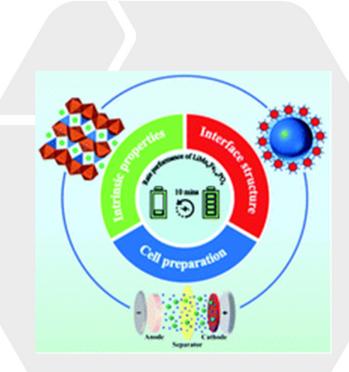
- ✓ LIB equipment
- ✓ Electrode/Assembly/Formation
- ✓ Business references worldwide

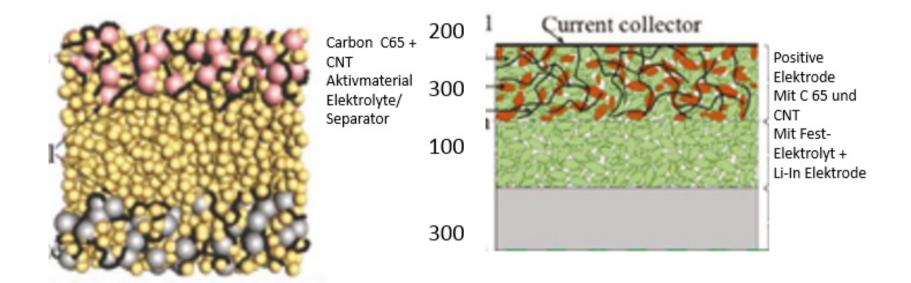
Production/R&D

- ✓ LIB production/R&D
- ✓ Pouch and Cylindrical types
- ✓ Prismatic cell in hard case

Consulting

- ✓ LIB professional consulting
 - Equipment/Production
 - Development
 - Advanced Technology
 - QA/Training


		T . 1			
Grade	Equipment manufacturing	Production and R&D	Consulting	Assistance	Total
Premium	3	1	6	1	11
High	5	2	6	1	14
Medium	6	4		2	12
Technician	2	1		1	4
Total	16	8	12	5	41


MATERIAL,
KOMPONENTEN TEAM PILOT —
LINE/
CONSULTING/
EQUIPMENT IM
INTERNATIONALEN
NETZWERK

Batteriezellenentwicklung mit Rezept/System/Pilotierung/Prozess/IP/B-Plan und Qualifizierung, ein Problemansatz:

- Olivin LiMnxFe1-xPO4 (LMFP) = hohe Sicherheit von LiFePO4 und die hohe Energiedichte von LiMnPO4
- Die inhärente niedrige elektronische Leitfähigkeit und der Li+ Diffusionskoeffizient
- Design hochstromfähiger LMFPbasierter Batterien,
 Zellvorbereitungstechnologie,
 Elektrolytauswahl und des Elektrodendesigns & mehr ...

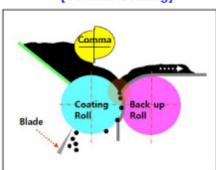
Schematisch: Zelle mit Solid (Fest, Keramisch, Polymer, Hybrid) Elektrolyt mit Kompositmaterial C65-CNT 100-300 = Elektrode

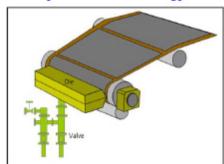
Komposit- Material und Elektroden für Batteriezellen, vorzugsweise für Typen von Feststoffbatterien (SSB)

• Beispiele: Einsatz/Ergebnisse/Vorteile

[Electrode process]

- Mixer, Coater, Presser, Slitter
- Slot-Die Nozzle coating (Stripe/Intermittent)
- Comma-Coating
- > NMC, LFP, LTO, Silicone coating
- ➢ OEM,ODM


[Presser]

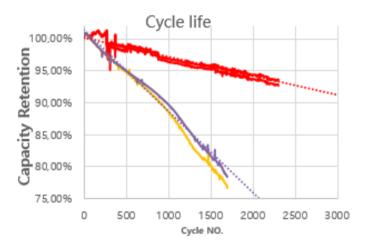

[Slitter]

[Comma-Coating]

[Intermittent-Coating]

Komposit-Material und Elektroden für Batteriezellen

- ✓ Komposit- Material und Elektroden für vorzugsweise HE/HP oder PHEV Batteriezellen, etwa für Typen von Feststoffbatterien (SSB), wobei als Kompositmaterial zwei Typen eingesetzt werden
- ✓ Positiven Elektrode mit etwa 0,5 % CNT ein Drittel umfasst, HE Ausführung
- ✓ HP-Zelle, wobei in der negativen Elektrode das Komposit-Material etwa CNT im Bereich von 0.05 % 1,2 % und C65 0,8-1,8 %
- ✓ Phosphat-Zelle, Manganspinell-Zelle, Feststoffbatterie positive Elektrode CNT etwa 0,9-3.4 % und C65 etwa 1,1-2,4 %.
- ✓ Negative CNT etwa 0,9 -1,4 % und C65 etwa 0.9-1,4 %
- ✓ → Zum IP Schutz angemeldet

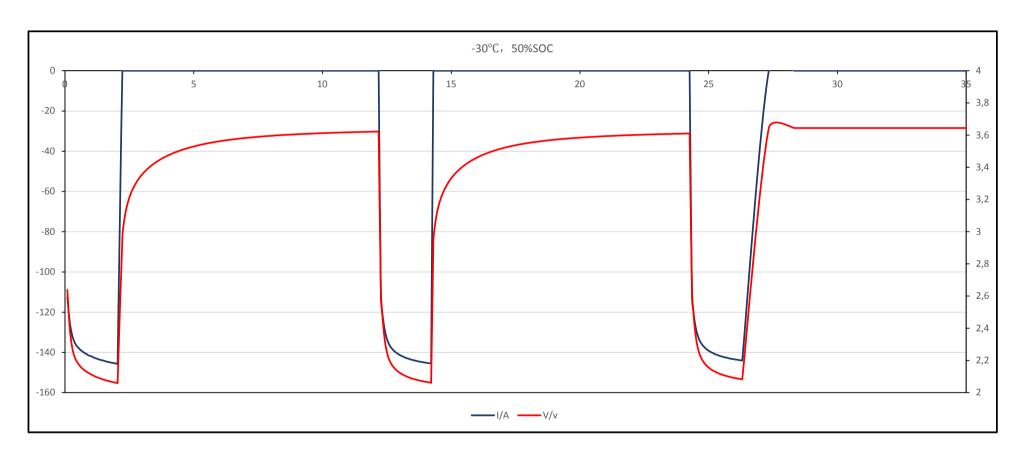

PHEV-NCM Zelle & Das Kompositmaterial

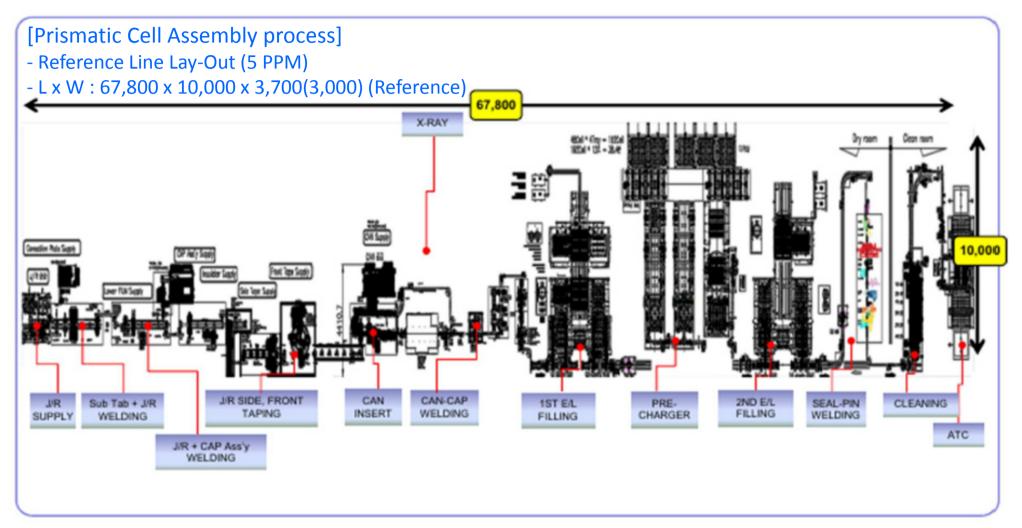
- ✓ Neben Energiezellauslegungen wurden auch PHEV -Zellen unter Einsatz des erfindungsgemäßen Komposit-Materials gebaut und getestet, für den kommerziellen Einsatz entwickelt.
- ✓ Das System der Batterie ist auf etwa 220 Wh/kg ausgelegt (3,2 g/Ah-negative).

		XA	ХВ	XC	ZIEL	Stand Zelle
Thickness/mm		9.57	9.74	9.81	10.5±0.5	11.3±0.3
weight/g		651	653	654	660±20	≤730g
AC IR/mΩ		0.63	0.59	~0.606	≤1.25	
1C Capacity/Ah		39.33	38	~38.7	≥38	37~38.85
1C energy density/ Wh/kg		218	214	215	≥210	≥185
30%SOC HPPC Density/ W/kg		2484	2468	2369	≥2000	
Discharge average Voltage/V		3.60	3.60	3.60	3.65	3.65
-20°C Discharge capacity		87.1%	87.7%	87.7%	≥75%	≥70%
45°C Discharge capacity		103%	104%	104%	≥98%	≥98%
25°C aging test	Retention	97.7%	98.4%	98.9%	≥93%	≥93%
23 G aging test	Recovery	99.2%	99.7%	100.3%	≥98%	≥96%
EE°C aging tost	Retention	95.4%	95.6%	96.6%	≥90%	≥93%
55°C aging test	Recovery	98.7%	98.9%	99.8%	≥93%	≥96%

PHEV-NCM Zelle & Das Kompositmaterial

 Die Zellen zeigen eine deutliche Verbesserung im Zyklenleben, meint in der Anzahl der Zyklen (100%DoD), die bis zur 80% Grenze der ursprünglichen Kapazität reichen:


PHEV-NCM Zelle & Das Kompositmaterial


• Die Entladeraten sind auch signifikant verbessert:

	K	apa rat	e	t/° C			
t° C	XA	XB	XC	XA	XB	XC	
-30	84. 9%	84. 6%	85. 4%	24. 51	22. 01	25. 13	
-20	97. 7%	87. 3%	87. 6%	19. 57	18. 25	18. 31	
-10	88. 3%	87. 6%	87. 9%	13. 85	12. 58	12. 41	
0	91. 7%	91. 2%	91.4%	10. 52	9. 13	9. 02	
10	95. 0%	94. 8%	94. 9%	8. 4	7. 42	7. 29	
25	I	ı	I	6. 48	5. 32	5. 56	
45	102. 9%	103. 6%	103. 9%	5. 3	4. 59	4. 17	
55	103. 2%	104. 1%	104. 5%	4. 78	4. 39	3. 75	

PHEV-NCM Zelle & Das Kompositmaterial

-30°C 50%SOC /2V/300W

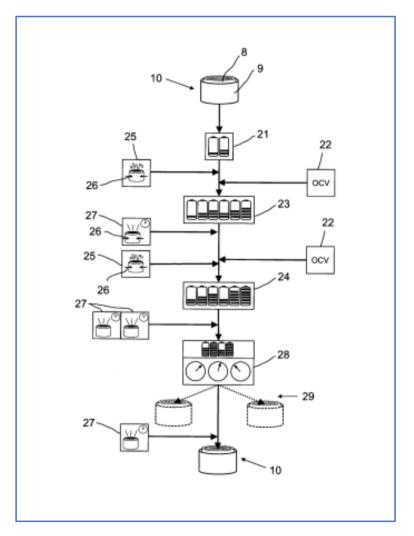
LFP HP - Zelle & Das Kompositmaterial

 stabile Entladespannung bei geringer Selbsterhitzung

1C	5C	10C	15C	20C	30C 96.5%
100.0%	97.69	6 95.7%	95.0%	94.7%	
≱ cei	man.p	ower+			
1C	5C	10C	15C	20C	30C
32.3	30.5	29.2	28.5	28.1	27.4
Max. ce	ell temper	rature [°C]			
10	5C	10C	15C	20C	30C
1C					25.0
26.1	28.7	30.8	32.3	33.5	26.8
	28.7	30.8	32.3	33.5	26.8
26.1		30.8 oltage	32.3	33.5	20.8
			32.3 15C	20C	30C

Family member of its species:

8117270 10 Ah Cell weight ~383g 60117270 9 Ah Cell weight ~340g



ENTWURF-PILOTIERUNG -LINIE- AUSRÜSTUNG-ENERGIEEFFIZIENZ - SERVICE

Prozessaspekte im Beispiel

- Verfahren zum Herstellen einer Batteriezelle, vorzugsweise einer Lilonen-Bi-Stapelzelle mit Feststoff
- Deutsches Patent: DE 10 2018 003 328 B4 2020

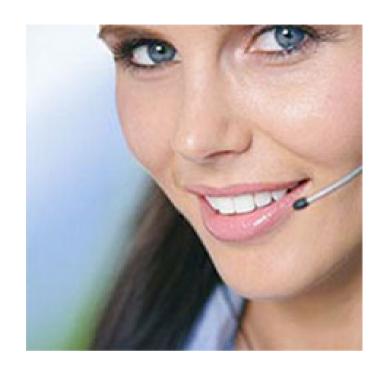
Prozess Troika

- Einerseits viele sicherheitsrelevante Fragen und der Leistungsfähigkeit der Batteriezellen effizient und mit hoher Ausbeute lösen und
- Andererseits eine sehr hohe Qualität sicherstellen, die sich über die gesamte Lebensdauer der Batteriezelle determiniert!
- Sicherheit, Verfügbarkeit, Ausbeute

Formations subschritte mit energetischer Anregung usw.

- Formierung in mindestens zwei Formierungsschritten
- Vor und/ oder nach jedem der mindestens zwei Formierungsschritte mindestens ein Entgasungsschritt
- Energetischen Anregung und mindestens ein Alterungsschritt
- → Stabilere SEI (bspw.) auch noch vergleichsweise dünner
- → Höherer Wirkungsgrad des Herstellungsverfahrens effizientere Formierung

Beispiele Troika Prozess



- ✓ High quality punching &
- ✓ Good electrolyte soaking.
- Our electrode backing condition is very important factor for reducing time at formation process and improvement of cycle performance.
- ✓ Advanced dry or ceramic separator better safety and life time.
- Non flammable electrolyte composition for nail penetration test-abuse,
- ✓ Pre charge step: for melting of metal contamination.
- ✓ Pre formation: applied low current condition to clear Black spot & Li-plate issues, make thin SEI layer of anode electrode, should be apply the factor of dv / dt and dq / dt for safety.
- ✓ Deagassing & main formation, OCV drop at rest 10min (△V1) after 3.870V (Safety check).

Fragen oder gerne:

- cerman.power+ Battery GmbH
- 99734 Nordhausen- Germany
- www.cermanpower.de
- <u>www.li-ionen-batterien.de</u>
- Ansprechpartner: Herr Tim Schäfer
- E-Mail: schaefer@envites.de

Equipment

- ✓ LIB equipment
- √ Electrode/Assembly/Formation
- ✓ Business references worldwide

Production/R&D

- ✓ LIB production/R&D
- ✓ Pouch and Cylindrical types
- Prismatic cell in hard case

Consulting

- ✓ LIB professional consulting
 - Equipment/Production
 - Development
 - Advanced Technology
 - QA/Training

		*			
Grade	Equipment manufacturing	Production and R&D	Consulting	Assistance	Total
Premium	3	1	6	1	11
High	5	2	6	1	14
Medium	6	4		2	12
Technician	2	1		1	4
Total	16	8	12	5	41

MATERIAL,
KOMPONENTEN TEAM PILOT —
LINE/
CONSULTING/
EQUIPMENT IM
INTERNATIONALEN
NETZWERK